Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Viruses ; 15(12)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38140576

RESUMEN

Marburg virus (MARV) causes severe disease and high mortality in humans. The objective of this study was to characterize disease manifestations and pathogenesis in cynomolgus macaques exposed to MARV. The results of this natural history study may be used to identify features of MARV disease useful in defining the ideal treatment initiation time for subsequent evaluations of investigational therapeutics using this model. Twelve cynomolgus macaques were exposed to a target dose of 1000 plaque-forming units MARV by the intramuscular route, and six control animals were mock-exposed. The primary endpoint of this study was survival to Day 28 post-inoculation (PI). Anesthesia events were minimized with the use of central venous catheters for periodic blood collection, and temperature and activity were continuously monitored by telemetry. All mock-exposed animals remained healthy for the duration of the study. All 12 MARV-exposed animals (100%) became infected, developed illness, and succumbed on Days 8-10 PI. On Day 4 PI, 11 of the 12 MARV-exposed animals had statistically significant temperature elevations over baseline. Clinically observable signs of MARV disease first appeared on Day 5 PI, when 6 of the 12 animals exhibited reduced responsiveness. Ultimately, systemic inflammation, coagulopathy, and direct cytopathic effects of MARV all contributed to multiorgan dysfunction, organ failure, and death or euthanasia of all MARV-exposed animals. Manifestations of MARV disease, including fever, systemic viremia, lymphocytolysis, coagulopathy, and hepatocellular damage, could be used as triggers for initiation of treatment in future therapeutic efficacy studies.


Asunto(s)
Enfermedad del Virus de Marburg , Marburgvirus , Humanos , Animales , Macaca fascicularis , Viremia , Hígado
2.
Sci Rep ; 13(1): 3131, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823196

RESUMEN

Remdesivir (GS-5734; VEKLURY) is a single diastereomer monophosphoramidate prodrug of an adenosine analog (GS-441524). Remdesivir is taken up by target cells and metabolized in multiple steps to form the active nucleoside triphosphate (GS-443902), which acts as a potent inhibitor of viral RNA-dependent RNA polymerases. Remdesivir and GS-441524 have antiviral activity against multiple RNA viruses. Here, we expand the evaluation of remdesivir's antiviral activity to members of the families Flaviviridae, Picornaviridae, Filoviridae, Orthomyxoviridae, and Hepadnaviridae. Using cell-based assays, we show that remdesivir can inhibit infection of flaviviruses (such as dengue 1-4, West Nile, yellow fever, Zika viruses), picornaviruses (such as enterovirus and rhinovirus), and filoviruses (such as various Ebola, Marburg, and Sudan virus isolates, including novel geographic isolates), but is ineffective or is significantly less effective against orthomyxoviruses (influenza A and B viruses), or hepadnaviruses B, D, and E. In addition, remdesivir shows no antagonistic effect when combined with favipiravir, another broadly acting antiviral nucleoside analog, and has minimal interaction with a panel of concomitant medications. Our data further support remdesivir as a broad-spectrum antiviral agent that has the potential to address multiple unmet medical needs, including those related to antiviral pandemic preparedness.


Asunto(s)
Filoviridae , Fiebre Hemorrágica Ebola , Infección por el Virus Zika , Virus Zika , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Adenosina Monofosfato , Alanina , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Infección por el Virus Zika/tratamiento farmacológico
3.
Sci Rep ; 11(1): 19458, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593911

RESUMEN

Efficacious therapeutics for Ebola virus disease are in great demand. Ebola virus infections mediated by mucosal exposure, and aerosolization in particular, present a novel challenge due to nontypical massive early infection of respiratory lymphoid tissues. We performed a randomized and blinded study to compare outcomes from vehicle-treated and remdesivir-treated rhesus monkeys in a lethal model of infection resulting from aerosolized Ebola virus exposure. Remdesivir treatment initiated 4 days after exposure was associated with a significant survival benefit, significant reduction in serum viral titer, and improvements in clinical pathology biomarker levels and lung histology compared to vehicle treatment. These observations indicate that remdesivir may have value in countering aerosol-induced Ebola virus disease.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Ebolavirus/efectos de los fármacos , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Adenosina Monofosfato/administración & dosificación , Adenosina Monofosfato/farmacología , Administración Intravenosa , Aerosoles , Alanina/administración & dosificación , Alanina/farmacología , Animales , Antivirales/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Fiebre Hemorrágica Ebola/sangre , Estimación de Kaplan-Meier , Hígado/efectos de los fármacos , Hígado/virología , Pulmón/patología , Pulmón/virología , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/patología , Ganglios Linfáticos/virología , Macaca mulatta , Masculino , Distribución Aleatoria , Síndrome de Respuesta Inflamatoria Sistémica/tratamiento farmacológico , Síndrome de Respuesta Inflamatoria Sistémica/virología , Carga Viral/efectos de los fármacos , Viremia/tratamiento farmacológico
4.
J Infect Dis ; 224(4): 632-642, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-33367826

RESUMEN

BACKGROUND: Ebola virus disease (EVD) supportive care strategies are largely guided by retrospective observational research. This study investigated the effect of EVD supportive care algorithms on duration of survival in a controlled nonhuman primate (NHP) model. METHODS: Fourteen rhesus macaques were challenged intramuscularly with a target dose of Ebola virus (1000 plaque-forming units; Kikwit). NHPs were allocated to intensive care unit (ICU)-like algorithms (n = 7), intravenous fluids plus levofloxacin (n = 2), or a control group (n = 5). The primary outcome measure was duration of survival, and secondary outcomes included changes in clinical laboratory values. RESULTS: Duration of survival was not significantly different between the pooled ICU-like algorithm and control groups (8.2 vs 6.9 days of survival; hazard ratio; 0.50; P = .25). Norepinephrine was effective in transiently maintaining baseline blood pressure. NHPs treated with ICU-like algorithms had delayed onset of liver and kidney injury. CONCLUSIONS: While an obvious survival difference was not observed with ICU-like care, clinical observations from this model may aid in EVD supportive care NHP model refinement.


Asunto(s)
Cuidados Críticos , Fiebre Hemorrágica Ebola , Unidades de Cuidados Intensivos , Animales , Modelos Animales de Enfermedad , Ebolavirus , Fiebre Hemorrágica Ebola/terapia , Macaca mulatta , Primates , Estudios Retrospectivos
5.
J Infect Dis ; 222(11): 1894-1901, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32479636

RESUMEN

Marburg virus (MARV) is a filovirus with documented human case-fatality rates of up to 90%. Here, we evaluated the therapeutic efficacy of remdesivir (GS-5734) in nonhuman primates experimentally infected with MARV. Beginning 4 or 5 days post inoculation, cynomolgus macaques were treated once daily for 12 days with vehicle, 5 mg/kg remdesivir, or a 10-mg/kg loading dose followed by 5 mg/kg remdesivir. All vehicle-control animals died, whereas 83% of animals receiving a 10-mg/kg loading dose of remdesivir survived, as did 50% of animals receiving a 5-mg/kg remdesivir regimen. Remdesivir-treated animals exhibited improved clinical scores, lower plasma viral RNA, and improved markers of kidney function, liver function, and coagulopathy versus vehicle-control animals. The small molecule remdesivir showed therapeutic efficacy in this Marburg virus disease model with treatment initiation 5 days post inoculation, supporting further assessment of remdesivir for the treatment of Marburg virus disease in humans.


Asunto(s)
Antimetabolitos/uso terapéutico , Antivirales/uso terapéutico , Enfermedad del Virus de Marburg/tratamiento farmacológico , Marburgvirus/efectos de los fármacos , Enfermedades de los Monos/tratamiento farmacológico , Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Animales , Modelos Animales de Enfermedad , Femenino , Estimación de Kaplan-Meier , Macaca fascicularis , Masculino , Enfermedad del Virus de Marburg/mortalidad , Enfermedad del Virus de Marburg/patología , Enfermedad del Virus de Marburg/virología , Enfermedades de los Monos/mortalidad , Enfermedades de los Monos/patología , Enfermedades de los Monos/virología , ARN Viral
6.
Viruses ; 12(1)2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31941095

RESUMEN

Recent Ebola virus (EBOV) outbreaks in West Africa and the Democratic Republic of the Congo have highlighted the urgent need for approval of medical countermeasures for treatment and prevention of EBOV disease (EVD). Until recently, when successes were achieved in characterizing the efficacy of multiple experimental EVD therapeutics in humans, the only feasible way to obtain data regarding potential clinical benefits of candidate therapeutics was by conducting well-controlled animal studies. Nonclinical studies are likely to continue to be important tools for screening and development of new candidates with improved pharmacological properties. Here, we describe a natural history study to characterize the time course and order of progression of the disease manifestations of EVD in rhesus monkeys. In 12 rhesus monkeys exposed by the intramuscular route to 1000 plaque-forming units of EBOV, multiple endpoints were monitored for 28 days following exposure. The disease progressed rapidly with mortality events occurring 7-10 days after exposure. Key disease manifestations observed consistently across the infected animals included, but were not limited to, viremia, fever, systemic inflammation, coagulopathy, lymphocytolysis, renal tubular necrosis with mineralization, and hepatocellular degeneration and necrosis.


Asunto(s)
Modelos Animales de Enfermedad , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/fisiopatología , Macaca mulatta/virología , Animales , Progresión de la Enfermedad , Femenino , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/mortalidad , Inyecciones Intramusculares , Masculino
7.
Antiviral Res ; 171: 104592, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31473342

RESUMEN

Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus Marburgvirus includes a single species for Marburg virus (MARV) and Ravn virus (RAVV). Ebola virus (EBOV) has emerged as a significant public health concern since the 2013-2016 Ebola Virus Disease outbreak in Western Africa. Currently, there are no therapeutics approved and the need for Ebola-specific therapeutics remains a gap. In search for anti-Ebola therapies we tested the idea of using inhibitory properties of peptides corresponding to the C-terminal heptad-repeat (HR2) domains of class I fusion proteins against EBOV infection. The fusion protein GP2 of EBOV belongs to class I, suggesting that a similar strategy to HIV may be applied to inhibit EBOV infection. The serum half-life of peptides was expanded by cholesterol conjugation to allow daily dosing. The peptides were further constrained to stabilize a helical structure to increase the potency of inhibition. The EC50s of lead peptides were in low micromolar range, as determined by a high-content imaging test of EBOV-infected cells. Lead peptides were tested in an EBOV lethal mouse model and efficacy of the peptides were determined following twice-daily administration of peptides for 9 days. The most potent peptide was able to protect mice from lethal challenge of mouse-adapted Ebola virus. These data show that engineered peptides coupled with cholesterol can inhibit viral production, protect mice against lethal EBOV infection, and may be used to build novel therapeutics against EBOV.


Asunto(s)
Antivirales/farmacología , Ebolavirus/efectos de los fármacos , Marburgvirus/efectos de los fármacos , Péptidos/farmacología , Secuencia de Aminoácidos , Animales , Antivirales/química , Línea Celular , Colesterol/química , Modelos Animales de Enfermedad , Fiebre Hemorrágica Ebola/virología , Enfermedad del Virus de Marburg/virología , Ratones , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Péptidos/química , Conformación Proteica , Relación Estructura-Actividad
8.
Antiviral Res ; 151: 50-54, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29289664

RESUMEN

During the 2013-2016 Ebola virus (EBOV) outbreak in West Africa, our team at USAMRIID evaluated the antiviral activity of a number of compounds, including favipiravir (T-705), in vitro and in mouse and nonhuman primate (NHP) models of Ebola virus disease. In this short communication, we present our findings for favipiravir in cell culture and in mice, while an accompanying paper presents the results of NHP studies. We confirmed previous reports that favipiravir has anti-EBOV activity in mice. Additionally, we found that the active form of favipiravir is generated in mice in tissues relevant for the pathogenesis of EBOV infection. Finally, we observed that protection can be achieved in mice down to 8 mg/kg/day, which is lower than the dosing regimens previously reported. An accompanying paper reports the results of treating nonhuman primates infected with EBOV or with Marburg virus with oral or intravenous favipiravir.


Asunto(s)
Amidas/farmacología , Amidas/uso terapéutico , Ebolavirus/efectos de los fármacos , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Pirazinas/farmacología , Pirazinas/uso terapéutico , Amidas/metabolismo , Animales , Antivirales/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citoplasma/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Marburgvirus/efectos de los fármacos , Ratones Endogámicos C57BL , Pirazinas/metabolismo , Análisis de Supervivencia , Replicación Viral/efectos de los fármacos
9.
Antiviral Res ; 151: 97-104, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29289666

RESUMEN

Favipiravir is a broad-spectrum antiviral agent that has demonstrated efficacy against Ebola virus (EBOV) in rodents. However, there are no published reports of favipiravir efficacy for filovirus infection of nonhuman primates (NHPs). Here we evaluated the pharmacokinetic profile of favipiravir in NHPs, as well as in vivo efficacy against two filoviruses, EBOV and Marburg virus (MARV). While no survival benefit was observed in two studies employing once- or twice-daily oral dosing of favipiravir during EBOV infection of NHPs, an antiviral effect was observed in terms of extended time-to-death and reduced levels of viral RNA. However, oral dosing in biosafety level-4 (BSL-4) presents logistical and technical challenges, and repeated anesthesia events may potentially worsen survival outcome in animals. For the third study of treatment of MARV infection, we therefore made use of catheters, jackets, and tethers for intravenous (IV) dosing and blood collection, which minimized the requirement for repeated anesthesia events. When MARV infection was treated with IV favipiravir, five of six animals (83%) survived infection, while all untreated NHPs succumbed. An accompanying report presents the results of favipiravir treatment of EBOV infection in mice.


Asunto(s)
Amidas/administración & dosificación , Amidas/farmacología , Ebolavirus/efectos de los fármacos , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Enfermedad del Virus de Marburg/tratamiento farmacológico , Marburgvirus/efectos de los fármacos , Pirazinas/administración & dosificación , Pirazinas/farmacología , Animales , Antivirales/administración & dosificación , Antivirales/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/virología , Masculino , Enfermedad del Virus de Marburg/patología , Enfermedad del Virus de Marburg/virología , Primates , ARN Viral/sangre , Análisis de Supervivencia , Carga Viral/efectos de los fármacos
10.
Emerg Infect Dis ; 23(8): 1316-1324, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28726603

RESUMEN

The Ebola virus (EBOV) outbreak in West Africa during 2013-2016 demonstrated the need to improve Ebola virus disease (EVD) diagnostics and standards of care. This retrospective study compared laboratory values and clinical features of 3 nonhuman primate models of lethal EVD to assess associations with improved survival time. In addition, the study identified laboratory values useful as predictors of survival, surrogates for EBOV viral loads, and triggers for initiation of therapeutic interventions in these nonhuman primate models. Furthermore, the data support that, in nonhuman primates, the Makona strain of EBOV may be less virulent than the Kikwit strain of EBOV. The applicability of these findings as potential diagnostic and management tools for EVD in humans warrants further investigation.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/virología , Animales , Biomarcadores , Fiebre Hemorrágica Ebola/mortalidad , Fiebre Hemorrágica Ebola/transmisión , Humanos , Estimación de Kaplan-Meier , Primates , ARN Viral , Curva ROC , Estudios Retrospectivos , Carga Viral
11.
Antiviral Res ; 138: 22-31, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27908828

RESUMEN

Iminosugars are host-directed antivirals with broad-spectrum activity. The iminosugar, N-butyl-deoxynojirimycin (NB-DNJ or Miglustat®), is used in humans for treatment of Gaucher's disease and has mild antiviral properties. More potent analogs of NB-DNJ have been generated and have demonstrated activity against a variety of viruses including flaviviruses, influenza, herpesviruses and filoviruses. In the current study, a panel of analogs based on NB-DNJ was analyzed for activity against Ebola (EBOV) and Marburg viruses (MARV). The antiviral activity of NB-DNJ (UV-1), UV-2, UV-3, UV-4 and UV-5 against both EBOV and MARV was demonstrated in Vero cells. Subsequent studies to examine the activity of UV-4 and UV-5 using rodent models of EBOV and MARV were performed. In vivo efficacy studies provided inconsistent data following treatment with iminosugars using filovirus mouse models. A tolerability study in nonhuman primates demonstrated that UV-4 could be administered at much higher dose levels than rodents. Since UV-4 was active in vitro, had been demonstrated to be active against influenza and dengue in vivo, and was being tested in a Phase 1 clinical trial, a small proof-of-concept nonhuman primate trial was performed to determine whether this antiviral candidate could provide clinical benefit to EBOV-infected individuals. Administration of UV-4B did not provide a clinical or survival benefit to macaques infected with EBOV-Makona; however, dosing of animals was not optimal in this study. Efficacy may be improved by thrice daily dosing (e.g. by nasogastric tube feeding) to match the efficacious dosing regimens demonstrated against dengue and influenza viruses.


Asunto(s)
Antivirales/farmacología , Antivirales/uso terapéutico , Ebolavirus/efectos de los fármacos , Iminoazúcares/farmacología , Iminoazúcares/uso terapéutico , Marburgvirus/efectos de los fármacos , 1-Desoxinojirimicina/administración & dosificación , 1-Desoxinojirimicina/agonistas , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacología , 1-Desoxinojirimicina/uso terapéutico , Animales , Antivirales/administración & dosificación , Antivirales/química , Chlorocebus aethiops , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Iminoazúcares/administración & dosificación , Iminoazúcares/química , Macaca , Ratones , Modelos Animales , Células Vero
12.
Viruses ; 8(4): 94, 2016 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-27070636

RESUMEN

Marburg virus (MARV) was the first filovirus to be identified following an outbreak of viral hemorrhagic fever disease in Marburg, Germany in 1967. Due to several factors inherent to filoviruses, they are considered a potential bioweapon that could be disseminated via an aerosol route. Previous studies demonstrated that MARV virus-like particles (VLPs) containing the glycoprotein (GP), matrix protein VP40 and nucleoprotein (NP) generated using a baculovirus/insect cell expression system could protect macaques from subcutaneous (SQ) challenge with multiple species of marburgviruses. In the current study, the protective efficacy of the MARV VLPs in conjunction with two different adjuvants: QS-21, a saponin derivative, and poly I:C against homologous aerosol challenge was assessed in cynomolgus macaques. Antibody responses against the GP antigen were equivalent in all groups receiving MARV VLPs irrespective of the adjuvant; adjuvant only-vaccinated macaques did not demonstrate appreciable antibody responses. All macaques were subsequently challenged with lethal doses of MARV via aerosol or SQ as a positive control. All MARV VLP-vaccinated macaques survived either aerosol or SQ challenge while animals administered adjuvant only exhibited clinical signs and lesions consistent with MARV disease and were euthanized after meeting the predetermined criteria. Therefore, MARV VLPs induce IgG antibodies recognizing MARV GP and VP40 and protect cynomolgus macaques from an otherwise lethal aerosol exposure with MARV.


Asunto(s)
Enfermedad del Virus de Marburg/prevención & control , Marburgvirus/inmunología , Vacunación , Vacunas de Partículas Similares a Virus/inmunología , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Inmunoglobulina G/inmunología , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Macaca fascicularis , Enfermedad del Virus de Marburg/inmunología , Enfermedad del Virus de Marburg/virología , Bazo/inmunología , Bazo/metabolismo , Bazo/patología , Factores de Tiempo , Resultado del Tratamiento , Vacunas de Partículas Similares a Virus/administración & dosificación , Viremia/virología
13.
Nature ; 531(7594): 381-5, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26934220

RESUMEN

The most recent Ebola virus outbreak in West Africa, which was unprecedented in the number of cases and fatalities, geographic distribution, and number of nations affected, highlights the need for safe, effective, and readily available antiviral agents for treatment and prevention of acute Ebola virus (EBOV) disease (EVD) or sequelae. No antiviral therapeutics have yet received regulatory approval or demonstrated clinical efficacy. Here we report the discovery of a novel small molecule GS-5734, a monophosphoramidate prodrug of an adenosine analogue, with antiviral activity against EBOV. GS-5734 exhibits antiviral activity against multiple variants of EBOV and other filoviruses in cell-based assays. The pharmacologically active nucleoside triphosphate (NTP) is efficiently formed in multiple human cell types incubated with GS-5734 in vitro, and the NTP acts as an alternative substrate and RNA-chain terminator in primer-extension assays using a surrogate respiratory syncytial virus RNA polymerase. Intravenous administration of GS-5734 to nonhuman primates resulted in persistent NTP levels in peripheral blood mononuclear cells (half-life, 14 h) and distribution to sanctuary sites for viral replication including testes, eyes, and brain. In a rhesus monkey model of EVD, once-daily intravenous administration of 10 mg kg(-1) GS-5734 for 12 days resulted in profound suppression of EBOV replication and protected 100% of EBOV-infected animals against lethal disease, ameliorating clinical disease signs and pathophysiological markers, even when treatments were initiated three days after virus exposure when systemic viral RNA was detected in two out of six treated animals. These results show the first substantive post-exposure protection by a small-molecule antiviral compound against EBOV in nonhuman primates. The broad-spectrum antiviral activity of GS-5734 in vitro against other pathogenic RNA viruses, including filoviruses, arenaviruses, and coronaviruses, suggests the potential for wider medical use. GS-5734 is amenable to large-scale manufacturing, and clinical studies investigating the drug safety and pharmacokinetics are ongoing.


Asunto(s)
Alanina/análogos & derivados , Antivirales/uso terapéutico , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Macaca mulatta/virología , Ribonucleótidos/uso terapéutico , Adenosina Monofosfato/análogos & derivados , Alanina/farmacocinética , Alanina/farmacología , Alanina/uso terapéutico , Secuencia de Aminoácidos , Animales , Antivirales/farmacocinética , Antivirales/farmacología , Línea Celular Tumoral , Ebolavirus/efectos de los fármacos , Femenino , Células HeLa , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Masculino , Datos de Secuencia Molecular , Especificidad de Órganos , Profármacos/farmacocinética , Profármacos/farmacología , Profármacos/uso terapéutico , Ribonucleótidos/farmacocinética , Ribonucleótidos/farmacología
14.
PLoS Negl Trop Dis ; 10(2): e0004456, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26901785

RESUMEN

Marburg virus (MARV) is an Ebola-like virus in the family Filovirdae that causes sporadic outbreaks of severe hemorrhagic fever with a case fatality rate as high as 90%. AVI-7288, a positively charged antisense phosphorodiamidate morpholino oligomer (PMOplus) targeting the viral nucleoprotein gene, was evaluated as a potential therapeutic intervention for MARV infection following delayed treatment of 1, 24, 48, and 96 h post-infection (PI) in a nonhuman primate lethal challenge model. A total of 30 cynomolgus macaques were divided into 5 groups of 6 and infected with 1,830 plaque forming units of MARV subcutaneously. AVI-7288 was administered by bolus infusion daily for 14 days at 15 mg/kg body weight. Survival was the primary endpoint of the study. While none (0 of 6) of the saline group survived, 83-100% of infected monkeys survived when treatment was initiated 1, 24, 48, or 96 h post-infection (PI). The antisense treatment also reduced serum viremia and inflammatory cytokines in all treatment groups compared to vehicle controls. The antibody immune response to virus was preserved and tissue viral antigen was cleared in AVI-7288 treated animals. These data show that AVI-7288 protects NHPs against an otherwise lethal MARV infection when treatment is initiated up to 96 h PI.


Asunto(s)
Modelos Animales de Enfermedad , Terapia Genética , Macaca fascicularis , Enfermedad del Virus de Marburg/terapia , Marburgvirus/genética , Morfolinos/administración & dosificación , ARN sin Sentido/genética , Animales , Femenino , Humanos , Macaca fascicularis/virología , Masculino , Enfermedad del Virus de Marburg/virología , Marburgvirus/fisiología , Morfolinos/genética , Morfolinos/metabolismo , ARN sin Sentido/metabolismo , Tiempo de Tratamiento
15.
N Engl J Med ; 373(4): 339-48, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26200980

RESUMEN

BACKGROUND: AVI-7288 is a phosphorodiamidate morpholino oligomer with positive charges that targets the viral messenger RNA that encodes Marburg virus (MARV) nucleoprotein. Its safety in humans is undetermined. METHODS: We assessed the efficacy of AVI-7288 in a series of studies involving a lethal challenge with MARV in nonhuman primates. The safety of AVI-7288 was evaluated in a randomized, multiple-ascending-dose study in which 40 healthy humans (8 humans per dose group) received 14 once-daily infusions of AVI-7288 (1 mg, 4 mg, 8 mg, 12 mg, or 16 mg per kilogram of body weight) or placebo, in a 3:1 ratio. We estimated the protective dose in humans by comparing pharmacokinetic variables in infected nonhuman primates, uninfected nonhuman primates, and uninfected humans. RESULTS: Survival in infected nonhuman primates was dose-dependent, with survival rates of 0%, 30%, 59%, 87%, 100%, and 100% among monkeys treated with 0 mg, 3.75 mg, 7.5 mg, 15 mg, 20 mg, and 30 mg of AVI-7288 per kilogram, respectively (P<0.001 with the use of the log-rank test for the comparison of survival across groups). No safety concern was identified at doses up to 16 mg per kilogram per day in humans. No serious adverse events were reported. Drug exposure (the area under the curve) was dose-dependent in both nonhuman primates and humans; drug clearance was independent of dose but was higher in nonhuman primates than in humans. The protective dose in humans was initially estimated, on the basis of exposure, to be 9.6 mg per kilogram per day (95% confidence interval, 6.6 to 12.5) for 14 days. Monte Carlo simulations supported a dose of 11 mg per kilogram per day to match the geometric mean protective exposure in nonhuman primates. CONCLUSIONS: This study shows that, on the basis of efficacy in nonhuman primates and pharmacokinetic data in humans, AVI-7288 has potential as postexposure prophylaxis for MARV infection in humans. (Funded by the Department of Defense; ClinicalTrials.gov number, NCT01566877.).


Asunto(s)
Antivirales/administración & dosificación , Enfermedad del Virus de Marburg/tratamiento farmacológico , Marburgvirus , Morfolinos/administración & dosificación , Animales , Antivirales/efectos adversos , Antivirales/farmacocinética , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Estimación de Kaplan-Meier , Macaca fascicularis , Enfermedad del Virus de Marburg/mortalidad , Marburgvirus/genética , Morfolinos/efectos adversos , Morfolinos/farmacocinética , ARN Mensajero , ARN Viral
16.
PLoS One ; 10(3): e0118881, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25793502

RESUMEN

Filoviruses cause hemorrhagic fever resulting in significant morbidity and mortality in humans. Several vaccine platforms that include multiple virus-vectored approaches and virus-like particles (VLPs) have shown efficacy in nonhuman primates. Previous studies have shown protection of cynomolgus macaques against homologous infection for Ebola virus (EBOV) and Marburg virus (MARV) following a three-dose vaccine regimen of EBOV or MARV VLPs, as well as heterologous protection against Ravn Virus (RAVV) following vaccination with MARV VLPs. The objectives of the current studies were to determine the minimum number of vaccine doses required for protection (using EBOV as the test system) and then demonstrate protection against Sudan virus (SUDV) and Taï Forest virus (TAFV). Using the EBOV nonhuman primate model, we show that one or two doses of VLP vaccine can confer protection from lethal infection. VLPs containing the SUDV glycoprotein, nucleoprotein and VP40 matrix protein provide complete protection against lethal SUDV infection in macaques. Finally, we demonstrate protective efficacy mediated by EBOV, but not SUDV, VLPs against TAFV; this is the first demonstration of complete cross-filovirus protection using a single component heterologous vaccine within the Ebolavirus genus. Along with our previous results, this observation provides strong evidence that it will be possible to develop and administer a broad-spectrum VLP-based vaccine that will protect against multiple filoviruses by combining only three EBOV, SUDV and MARV components.


Asunto(s)
Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Virión/inmunología , Animales , Protección Cruzada/inmunología , Fiebre Hemorrágica Ebola/sangre , Fiebre Hemorrágica Ebola/virología , Inmunidad Humoral , Macaca/sangre , Macaca/inmunología , Macaca/virología , Vacunación , Vacunas Virales/inmunología
17.
mBio ; 6(1)2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25670780

RESUMEN

UNLABELLED: Ebola viruses (EBOV) cause severe disease in humans and nonhuman primates with high mortality rates and continue to emerge in new geographic locations, including several countries in West Africa, the site of a large ongoing outbreak. Phosphorodiamidate morpholino oligomers (PMOs) are synthetic antisense molecules that are able to target mRNAs in a sequence-specific fashion and suppress translation through steric hindrance. We previously showed that the use of PMOs targeting a combination of VP35 and VP24 protected rhesus monkeys from lethal EBOV infection. Surprisingly, the present study revealed that a PMOplus compound targeting VP24 alone was sufficient to confer protection from lethal EBOV infection but that a PMOplus targeting VP35 alone resulted in no protection. This study further substantiates recent data demonstrating that VP24 may be a key virulence factor encoded by EBOV and suggests that VP24 is a promising target for the development of effective anti-EBOV countermeasures. IMPORTANCE: Several West African countries are currently being ravaged by an outbreak of Ebola virus (EBOV) that has become a major epidemic affecting not only these African countries but also Europe and the United States. A better understanding of the mechanism of virulence of EBOV is important for the development of effective treatments, as no licensed treatments or vaccines for EBOV disease are currently available. This study of phosphorodiamidate morpholino oligomers (PMOs) targeting the mRNAs of two different EBOV proteins, alone and in combination, demonstrated that targeting a single protein was effective at conferring a significant survival benefit in an EBOV lethal primate model. Future development of PMOs with efficacy against EBOV will be simplified if only one PMO is required instead of a combination, particularly in terms of regulatory approval.


Asunto(s)
Ebolavirus/genética , Fiebre Hemorrágica Ebola/prevención & control , Morfolinos/administración & dosificación , Proteínas Virales/genética , Animales , Ebolavirus/efectos de los fármacos , Ebolavirus/metabolismo , Fiebre Hemorrágica Ebola/virología , Humanos , Macaca mulatta , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo
18.
Viral Immunol ; 28(1): 32-41, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25514385

RESUMEN

The rhesus macaque serves as an animal model for Ebola virus (EBOV) infection. A thorough understanding of EBOV infection in this species would aid in further development of filovirus therapeutics and vaccines. In this study, pathological and immunological data from EBOV-infected rhesus macaques are presented. Changes in blood chemistries, hematology, coagulation, and immune parameters during infection, which were consistently observed in the animals, are presented. In an animal that survived challenge, a delay was observed in the detection of viral RNA and inflammatory cytokines and chemokines which may have contributed to survival. Collectively, these data add to the body of knowledge regarding EBOV pathogenesis in rhesus macaques and emphasize the reproducibility of the rhesus macaque challenge model.


Asunto(s)
Ebolavirus/crecimiento & desarrollo , Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/virología , Enfermedades de los Primates/patología , Enfermedades de los Primates/virología , Animales , Modelos Animales de Enfermedad , Femenino , Macaca mulatta , Masculino
19.
Viral Immunol ; 28(1): 62-70, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25514232

RESUMEN

Filoviruses are causative agents of hemorrhagic fever, and to date no effective vaccine or therapeutic has been approved to combat infection. Filovirus glycoprotein (GP) is the critical immunogenic component of filovirus vaccines, eliciting high levels of antibody after successful vaccination. Previous work has shown that protection against both Ebola virus (EBOV) and Marburg virus (MARV) can be achieved by vaccinating with a mixture of virus-like particles (VLPs) expressing either EBOV GP or MARV GP. In this study, the potential for eliciting effective immune responses against EBOV, Sudan virus, and MARV with a single GP construct was tested. Trimeric hybrid GPs were produced that expressed the sequence of Marburg GP2 in conjunction with a hybrid GP1 composed EBOV and Sudan virus GP sequences. VLPs expressing these constructs, along with EBOV VP40, provided comparable protection against MARV challenge, resulting in 75 or 100% protection. Protection from EBOV challenge differed depending upon the hybrid used, however, with one conferring 75% protection and one conferring no protection. By comparing the overall antibody titers and the neutralizing antibody titers specific for each virus, it is shown that higher antibody responses were elicited by the C terminal region of GP1 than by the N terminal region, and this correlated with protection. These data collectively suggest that GP2 and the C terminal region of GP1 are highly immunogenic, and they advance progress toward the development of a pan-filovirus vaccine.


Asunto(s)
Protección Cruzada , Ebolavirus/inmunología , Marburgvirus/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Antígenos Virales/genética , Antígenos Virales/inmunología , Ebolavirus/genética , Femenino , Cobayas , Fiebre Hemorrágica Ebola/prevención & control , Enfermedad del Virus de Marburg/prevención & control , Marburgvirus/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Análisis de Supervivencia , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética , Proteínas del Envoltorio Viral/genética , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Virosomas/genética , Virosomas/inmunología
20.
ACS Infect Dis ; 1(6): 264-71, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-27622742

RESUMEN

Herein we report on a diazachrysene class of small molecules that exhibit potent antiviral activity against the Ebola (EBOV) virus. The antiviral compounds are easily synthesized, and the most active compounds have excellent in vitro activity (0.34-0.70 µM) and are significantly less lipophilic than their predecessors. The three most potent diazachrysene antivirals do not exhibit any toxicity in vivo and protected 70-90% of the mice at 10 mg/kg following EBOV challenge. Together, these studies suggest that diazachrysenes are a promising class of compounds for hit to lead optimization and as potential Ebola therapeutics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...